Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

There has been an exponential growth in the performance and output of sequencing technologies (omics data) with full genome sequencing now producing gigabases of reads on a daily basis. These data may hold the promise of personalized medicine, leading to routinely available sequencing tests that can guide patient treatment decisions. In the era of high-throughput sequencing (HTS), computational considerations, data governance and clinical translation are the greatest rate-limiting steps. To ensure that the analysis, management and interpretation of such extensive omics data is exploited to its full potential, key factors, including sample sourcing, technology selection and computational expertise and resources, need to be considered, leading to an integrated set of high-performance tools and systems. This article provides an up-to-date overview of the evolution of HTS and the accompanying tools, infrastructure and data management approaches that are emerging in this space, which, if used within in a multidisciplinary context, may ultimately facilitate the development of personalized medicine.

Original publication

DOI

10.1093/bib/bby051

Type

Journal

Brief Bioinform

Publication Date

27/09/2019

Volume

20

Pages

1795 - 1811

Keywords

clinical translation, cloud computing, grid computing, high-performance computing, high-throughput sequencing, personalized medicine, translational research, Biomedical Research, Cloud Computing, Computational Biology, Computer Security, Ethics, High-Throughput Nucleotide Sequencing, Precision Medicine