Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Tebentafusp is a first-in-class bispecific fusion protein designed to target gp100 (a melanoma-associated antigen) through a high affinity T-cell receptor (TCR) binding domain and an anti-CD3 T-cell engaging domain, which redirects T cells to kill gp100-expressing tumor cells. Here, we report a multicenter phase I/II trial of tebentafusp in metastatic melanoma (NCT01211262) focusing on the mechanism of action of tebentafusp. PATIENTS AND METHODS: Eighty-four patients with advanced melanoma received tebentafusp. Treatment efficacy, treatment-related adverse events, and biomarker assessments were performed for blood-derived and tumor biopsy samples obtained at baseline and on-treatment. RESULTS: Tebentafusp was generally well-tolerated and active in both patients with metastatic uveal melanoma and patients with metastatic cutaneous melanoma. A 1-year overall survival rate of 65% was achieved for both patient cohorts. On-treatment cytokine measurements were consistent with the induction of IFNγ pathway-related markers in the periphery and tumor. Notably, tebentafusp induced an increase in serum CXCL10 (a T-cell attractant) and a reduction in circulating CXCR3+ CD8+ T cells together with an increase in cytotoxic T cells in the tumor microenvironment. Furthermore, increased serum CXCL10 or the appearance of rash (likely due to cytotoxic T cells targeting gp100-expressing skin melanocytes) showed a positive association with patient survival. CONCLUSIONS: These data suggest that redirecting T cells using a gp100-targeting TCR/anti-CD3 bispecific fusion protein may provide benefit to patients with metastatic melanoma. Furthermore, the activity observed in these two molecularly disparate melanoma classes hints at the broad therapeutic potential of tebentafusp.

Original publication

DOI

10.1158/1078-0432.CCR-20-1247

Type

Journal

Clin Cancer Res

Publication Date

15/11/2020

Volume

26

Pages

5869 - 5878

Keywords

Adult, Aged, Ataxia Telangiectasia Mutated Proteins, CD3 Complex, CD8-Positive T-Lymphocytes, Cell Proliferation, Chemokine CXCL10, Cytotoxicity, Immunologic, Disease-Free Survival, Female, Gene Expression Regulation, Neoplastic, Humans, Immunity, Interferon-gamma, Male, Melanoma, Middle Aged, Neoplasm Proteins, Receptors, Antigen, T-Cell, Receptors, CXCR3, Recombinant Fusion Proteins, Tumor Microenvironment, gp100 Melanoma Antigen