Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: Survival extrapolation for chimeric antigen receptor T-cell therapies is challenging, owing to their unique mechanistic properties that translate to complex hazard functions. Axicabtagene ciloleucel is indicated for the treatment of relapse or refractory diffuse large B-cell lymphoma after 2 or more lines of therapy based on the ZUMA-1 trial. Four data snapshots are available, with minimum follow-up of 12, 24, 36, and 48 months. This analysis explores how survival extrapolations for axicabtagene ciloleucel using ZUMA-1 data can be validated and compared. METHODS: Three different parametric modeling approaches were applied: standard parametric, spline-based, and cure-based models. Models were compared using a range of metrics, across the 4 data snapshot, including visual fit, plausibility of long-term estimates, statistical goodness of fit, inspection of hazard plots, point-estimate accuracy, and conditional survival estimates. RESULTS: Standard and spline-based parametric extrapolations were generally incapable of fitting the ZUMA-1 data well. Cure-based models provided the best fit based on the earliest data snapshot, with extrapolations remaining consistent as data matured. At 48 months, the maximum survival overestimate was 8.3% (Gompertz mixture-cure model) versus the maximum underestimate of 33.5% (Weibull standard parametric model). CONCLUSIONS: Where a plateau in the survival curve is clinically plausible, cure-based models may be helpful in making accurate predictions based on immature data. The ability to reliably extrapolate from maturing data may reduce delays in patient access to potentially lifesaving treatments. Additional research is required to understand how models compare in broader contexts, including different treatments and therapeutic areas.

Original publication

DOI

10.1016/j.jval.2021.10.015

Type

Journal

Value Health

Publication Date

06/2022

Volume

25

Pages

1010 - 1017

Keywords

chimeric antigen receptor T-cell, mixture-cure model, non-Hodgkin lymphoma, survival extrapolation, Antigens, CD19, Cell- and Tissue-Based Therapy, Follow-Up Studies, Humans, Immunotherapy, Adoptive, Neoplasm Recurrence, Local, Receptors, Chimeric Antigen